Pilot scale study of Co-Fe-Ni nanocatalyst for CO hydrogenation in Fischer-Tropsch synthesis
Authors
Abstract:
In this work, a Co-Fe-Ni catalyst was prepared and the effect of a range of operational variables such as gas hourly space velocity (GHSV), calcination temperature, calcination time and agent on its catalytic performance for green-fuels production was investigated. By application of different characterization techniques such as XRD, BET, TGA/DSC, and SEM, it was found that these parameters have great effects on the structure, porosity, morphology and physic-chemical properties of this catalyst. The optimum conditions were found for the samples which were calcined at 550 ℃ in air for 6 hours, and operated at 300 ℃ and 4800h-1 as the reaction temperature and GHSV respectively. Results also revealed that any increase in the calcination temperature promotes the product shifting towards heavier hydrocarbons (more C5+ production). Calcination in air atmosphere was more effective than calcination in N2 atmosphere.
similar resources
Mechanism of Cobalt-Catalyzed CO Hydrogenation: 2. Fischer–Tropsch Synthesis
Fischer-Tropsch (FT) synthesis is one of the most complex catalyzed chemical reactions in which the chain-growth mechanism that leads to formation of long-chain hydrocarbons is not well understood yet. The present work provides deeper insight into the relation between the kinetics of the FT reaction on a silica-supported cobalt catalyst and the composition of the surface adsorbed layer. Cofeedi...
full textSynthesis and Characterization of Co-Mn Nanocatalyst Prepared by Thermal Decomposition for Fischer-Tropsch Reaction
Nano-structure of Co–Mn spinel oxide was prepared by thermal decomposition method using [Co(NH3)4CO3]MnO4 as the precursor. The properties of the synthesized material were characterized by X-Ray Diffraction (XRD), Brunauer-Emmett-Teller (BET), Transmission Electron Microscopy (TEM), surface area measurements, Energy-Dispersive X-ray (EDX) spectroscopy analys...
full textpreparation and characterization of new co-fe and fe-mn nano catalysts using resol phenolic resin and response surface methodology study for fischer-tropsch synthesis
کاتالیزورهای co-fe-resol/sio2و fe-mn-resol/sio2 با استفاده از روش ساده و ارزان قیمت همرسوبی تهیه شدند. از رزین پلیمری resol در فرآیند تهیه کاتالیزور استفاده شد.
A Neuro-Fuzzy Algorithm for Modeling of Fischer-Tropsch Synthesis over a Bimetallic Co/Ni/Al2O3 Catalyst
An alumina supported Co/Ni catalyst was prepared by sol-gel procedure to study the catalytic behavior during Fischer-Tropsch synthesis in a fixed-bed reactor. The effect of CO conversion (10-50%) on hydrocarbon product distribution (CH4, C5+ and C2-C4 olefin selectivities) was studied. Selectivity for CH4 decreased, while those of C5+<...
full textKinetic Study of Fischer Tropsch Synthesis over co Precipitated Iron-Cerium Catalyst
The kinetic of Fischer-Tropsch synthesis over a co-precipitated Fe-Ce catalyst was investigated in a fixed bed micro reactor. Experimental conditions were varied as follow: reaction pressure 1-15bar, H¬¬¬2/CO feed ratio of 1-3 and space velocity of 3600-5400 h-1 at the temperature range of 270-310°C. 4 models according to the Langmuir-Hinshelwood-Hougen-Watson (LHHW) type rate equation were der...
full textPrediction of Fe-Co-Mn/MgO Catalytic Activity in Fischer-Tropsch Synthesis Using Nu-support Vector Regression
Support vector regression (SVR) is a learning method based on the support vector machine (SVM) that can be used for curve fitting and function estimation. In this paper, the ability of the nu-SVR to predict the catalytic activity of the Fischer-Tropsch (FT) reaction is evaluated and the result is compared with two other prediction techniques including: multilayer perceptron (MLP) and subtractiv...
full textMy Resources
Journal title
volume 9 issue 3
pages 223- 231
publication date 2019-09-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023